Searching Libraries of Known Structures for Dereplication: Benefits and Requirements

<u>Nadia Laschuk</u>, Dimitris Argyropoulos, Rostislav Pol, and Sergey Golotvin Advanced Chemistry Development, Inc. (ACD/Labs), Toronto, ON, Canada

Introduction

Dereplication is an important step in natural product research as well as in competitive, counterfeit, and reaction product analysis. It aims to answer the question

"Has anyone seen this structure before?"

We also saw that as the MW increases, the uncertainty and the number of missing or extra peaks required increases as well. (Figure 3) However, the correct result can always be identified within a few seconds.

Dereplication can be done using LC-MS (retention time and molecular ion mass) or NMR data, amongst others. The use of ¹³C NMR spectral information is generally preferred¹ as it provides a clear fingerprint of the compound's carbon skeleton. We have previously explored the benefits of using databases with predicted spectra of compounds. Currently, both commercial² and freely available³⁻⁵ options exist. Here, we explore the capabilities and requirements of such systems.

Results and Discussion

We selected 56 compounds from the Aldrich library of FT-NMR spectra, with a molecular weight (MW) range of 100-800. We then searched the database of Known Structures available with ACD/NMR Workbook, consisting of >100 million predicted spectra for structures from PubChem. Using the observed experimental peak frequencies and the MW, the correct structure was identified as the top hit in the majority of cases (Figure 2), indicating the validity and potential of the method.

Figure 3: Rank of the correct structure in the search results vs. MW for all the compounds. Orange dots represent hits ranked 1 while blue dots represent ranking more than 1. Dots with a shadow required search parameters to allow one or more missing or extra peaks.

Finally, we explored the search options with respect to the inclusion/exclusion of the MW information. We saw that the MW information is essential, as it

For the cases where the correct structure was not ranked first, we experimented with adjusting the number of extra or missing peaks allowed in the experimental data input. (Figure 1) In almost all the cases, we were able to find optimal conditions that gave the correct result.

Spectral Data			
Reject Structures with Match Factor	or more than:	3 🗦	ppm
Reject Structures with Number of	Signals less than	. 20 🗦	% in Spectrum
Allow Lack of Signals in "Whole" S	Structures:	0 .	Signals
Allow Excess of Signals in Structur	res:	0 🔹	Signals
Allow Excess for Quaternary C	Carbons Only		
Ignore Peak Intensity			
Composition			
Composition Check Composition C(2.52) U(0.400)			
Composition: C(3-50) H(0-100)		F	xact Search
Monoisotopic Mass			
Monoisotopic Mass Check Monoisotopic Mass From: 116.65 To: 117.65	5 💼 Tolerand	æ (Da): 0.5	
Monoisotopic Mass Check Monoisotopic Mass From: 116.65 To: 117.65 Tolerances	5 💼 Tolerand	e (Da): 0.5	120
Monoisotopic Mass Check Monoisotopic Mass From: 116.65 To: 117.65 Tolerances Minimum Possible Tolerance for All A	5 💼 Toleranc	æ (Da): 0.5 an)	13C 20 • ppm
Monoisotopic Mass Check Monoisotopic Mass From: 116.65 To: 117.65 Tolerances Minimum Possible Tolerance for All A Maximum Possible Tolerance for All A	Tolerance Tolerance Notoms (no less the Atoms (no more t	æ (Da): 0.5 an) han)	13C 20 • ppm 20 • ppm
Monoisotopic Mass Check Monoisotopic Mass From: 116.65 To: 117.65 Tolerances Minimum Possible Tolerance for All A Maximum Possible Tolerance for All A	Toleranc	æ (Da): 0.5 an) han)	13C 20 • ppm 20 • ppm
Monoisotopic Mass Check Monoisotopic Mass From: 116.65 To: 117.65 Tolerances Minimum Possible Tolerance for All A Maximum Possible Tolerance for All A Silter Use the Best Stereoisomer Only	Toleranc toms (no less that Atoms (no more t	æ (Da): 0.5 an) han)	13C 20 • ppm 20 • ppm
Monoisotopic Mass Check Monoisotopic Mass From: 116.65 To: 117.65 Tolerances Minimum Possible Tolerance for All A Maximum Possible Tolerance for All A ilter Use the Best Stereoisomer Only Search Databases	Tolerance Tolerance Notoms (no less that Atoms (no more t	æ (Da): 0.5 an) han)	13C 20 • ppm 20 • ppm

provides a very clear starting point and deals effectively with symmetric compounds.

Conclusion

40

Searching libraries of predicted ¹³C NMR spectra is a highly efficient dereplication method that gives the correct result in seconds when the search parameters are sufficiently optimized. We also found that the inclusion of the MW is essential for the search, and increasingly relaxed search options are required as the MW increases.

References

 R.B. Williams, M. O'Neill-Johnson, A.J. Williams, P. Wheeler, R. Pol, A. Moser. (2015). Org. Biomol. Chem., 13, 9957–9962.
 D. Argyropoulos, S. Golotvin, R. Pol, A. Moser, N. Ortel, S. Breinlinger, T. Chilzuk and T. Niedermeyer, "Efficient Dereplication of Natural Products Using Predicted 13C Spectra" presented at 60th

ENC, Poster 004, 2019.

3. H. Kalchhauser, W. Robien. (**1985**). Chem. Inf. Comput. Sci., 25(2), 103–108.

4. R. Reher, H. W. Kim, C. Zhang et al. (**2020**). J. Am. Chem. Soc., 142(9), 4114–4120.

5. Z. Yang, J. Song, M. Yang, L. Yao, J. Zhang, H. Shi, X. Ji, Y. Deng and X. Wang. (**2021**). *Anal. Chem.,* 93(50), 16947–16955.

Figure 1: The search options dialog box, highlighting the fields to enter the values for the extra and missing peaks in the experimental spectrum.

Figure 2: The chemical structures used in this study. Those highlighted in green were ranked first in the search, those in yellow were second, those in orange were ranked in positions 3 to 9, and those in red were ranked 10th or higher.

Visit the ACD/Labs Hospitality Suite in Poinciana B